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NATURAL CONVECTION WITHIN A SIMPLIFIED MODEL 
OF THE HUMAN EYE 
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ABSTRACT 
A finite difference solution for steady natural convective flow within the human eye, modelled as a sphere 
with a specified temperature distribution over its surface, has been obtained. The stream function-vorticity 
formulation of the equations of motion for the unsteady axisymmetric flow is used; interest lying in the 
final steady solution. Forward differences are used for the time derivatives and second-order central 
differences for the space derivatives. The alternating direction implicit method is used for solution of the 
discretization equations. Local one-dimensional grid adaptation is used to resolve the steep gradients in 
some regions of the flow at large Rayleigh numbers. The break-up into multi-cellular flow is found at high 
Rayleigh numbers. Results identify regions of stagnant fluid in locations similar to those of blind spots in 
the eye. 
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NOMENCLATURE 
aθ false transient factor for temperature Greek 
aΨ false transient factor for stream α thermal diffusivity of the fluid 

function β coefficient of volumetric expansion of 
aΩ false transient factor for vorticity the fluid 
g acceleration due to gravity ∆f mesh size in the f direction 
Gr Grashof number ∆Τ dimensionless time step 
Pr Prandtl number of the fluid f latitude angle measured clockwise 
r radial coordinate measured from the from the North position 

centre of the sphere v kinematic viscosity of the fluid 
re radius of the eye (sphere) θ dimensionless temperature 
R dimensionless radial coordinate Τ dimensionless time 
Ra Rayleigh number = Gr Pr ω dimensional vorticity 
∆R mesh size in the radial direction Ω dimensionless vorticity 
t time y dimensional stream function 
T temperature of the fluid Ψ dimensionless stream function 
T1 maximum temperature of the eye 

surface Subscripts 
T2 minimum temperature of the eye b value at the boundary 

surface b +1 value at one mesh length ∆R away 
u velocity component in the f direction from the boundary 
U dimensionless velocity component in s refers to the eye surface 

the f direction max maximum value 
v radial velocity component min minimum value 
V dimensionless radial velocity 

component 
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INTRODUCTION 
Temperature variations within the human eye remain largely unstudied. A few reports in the 
literature deal with measurements of intraocular temperatures in animal eyes1-4, but we are not 
aware of meaningful data available on human eyes. It is well established that the retina is one 
of the most metabolically active areas in the human body, and that the blood flow rate of the 
choriocapillaris, which provides nutrition to the retina, is extremely high. Retinal function is 
dependent upon biochemical reactions within the rods, cones, and retinal neural cells. It is 
reasonable to assume that variations in temperature could affect the rates of biochemical reactions 
within the retina. The possible effects of temperature changes within the eye include alteration 
of visual function, development of retinal degenerative diseases, role of drugs administered within 
the eye for certain infections or inflammations, etc. In addition to the atmospheric alteration of 
temperature, the use of intense illumination during examination of the eye and during surgical 
procedures on the globe can influence tissue temperature levels. There are cases where operating 
microscopes have been implicated in retinal burns during cataract surgery. 

This analysis was therefore undertaken to study the effect of temperature changes on the flow 
patterns within the human eye in an effort to evaluate the role of temperature in the 
proper functioning of the eye. The eyeball is situated in the anterior part of the orbital cavity 
and is roughly spherical in shape. The anteriorly placed biconvex lens divides the eyeball cavity 
into two parts. The posterior part is filled with a jelly-like vitreous body, and the anterior with 
the fluid aqueous humor. Both fluids have properties very similar to those of water. It is known 
that the temperature of the retina is higher than that of the cornea due to latter's exposure to 
the atmosphere. The actual distribution of temperature along the eyeball surface is, however, 
unknown, and will be assumed for this study. Any other distribution can be easily handled. This 
temperature distribution causes natural convection currents within the fluid filled in the eye. 
The present study analyses this convection pattern with a view to determine regions of stagnant 
fluid that have clinical implications. The eye is modelled as a sphere containing water at 37°C, 
and subject to a specified temperature distribution over its surface. 

While there are several studies available on the natural convective flow within a spherical 
annulus (see Gardner et al.5 for a list of references), there are very few studies on the flow within 
a sphere. A transient solution in powers of Grashof number for water cooling in a sphere was 
first obtained by Pustovoit6. However, he carried the solution to only the first order, and thus 
presented results for Gr=300 and Pr=6.75 for a dimensionless time of unity. Whitley and 
Vachon7 carried out a finite difference solution for transient convection in a sphere due to a 
sudden change of surface temperature. However, they could carry their solution to a small time 
only due to a slow numerical procedure. Chow and Akins8 investigated experimentally the 
pseudo-steady natural convection of water in a sphere with a fixed difference between the surface 
and centre temperatures, and found differences between their results and those of Whitley and 
Vachon7. More recently, Mochimaru9 used a Fourier series in latitude to solve for the transient 
convection within a sphere generated by a step change in wall temperature. This as well as the 
analysis of Shiina10 is in Japanese. Shiina solved the integral boundary layer equations using 
fourth-order polynomials for the velocity and temperature profiles for the case when the sphere 
surface is cooled with a stagnation point at the top of the sphere. 

From the above description, it is apparent that no study of the natural convective flow within 
a sphere subjected to a specified temperature distribution at its surface is available. We therefore 
describe a finite difference method that is fast, reliable and accurate for the steady axisymmetric 
natural convection heat transfer of a viscous fluid enclosed within a sphere. The equations of 
motion for the unsteady flow are solved to get the steady state solution. The method can also 
be applied to other geometries and boundary conditions. 

ANALYSIS 
As described above, the eye is modelled as a sphere filled with water, and having a specified 
temperature variation along the spherical wall. We can assume the flow within the sphere to be 
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where 

Here θ, Ψ and Ω are the dimensionless temperature, stream function and vorticity, respectively; 
R is the dimensionless radial coordinate; f is the latitude angle measured clockwise from the 
vertically upward position; Τ is the dimensionless time; V and U are the dimensionless velocity 
components in R and f directions, respectively, and Gr and Pr are the Grashof and Prandtl 
numbers defined as: 

This scaling is suggested in the literature11,12 for Pr of order unity and large Gr. Also, following 
de Vahl Davis12, the energy equation (1) has been multiplied by Pr so that the solution time 
is almost independent of the Prandtl number. Here, T, y, ω, v, u, and t are the dimensional 
counterparts of θ, Ψ, Ω, V, U and Τ, respectively, and r is the radial coordinate. Also, T1 and 
T2 are the maximum and minimum temperatures, respectively, of the eye surface, v and a are 
the kinematic viscosity and thermal diffusivity of the fluid, respectively, g is the acceleration due 
to gravity, and β is the coefficient of thermal expansion. 

Due to axisymmetry (solution independent of the longitude), only half the domain need be 
considered. The following boundary and initial conditions apply: 

axisymmetric, that is, independent of longitude, thereby analysing the flow within the half sphere 
only. Assuming constant properties except density, and using the Boussinesq approximation 
and spherical coordinates, the unsteady dimensionless energy and Navier-Stokes equations in 
the stream function-vorticity form are: 
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Here θs(f) represents the dimensionless temperature variation over the eye surface. It has not 
yet been measured for the human eye. For this analysis, it is assumed to be sinusoidal, varying 
from 0 (temperature T2) at the top to 1 (temperature T1) at the bottom of the sphere. This yields 
θs(f) varying from 0 to 1/2 for 0 f 60°, and from 1/2 to 1 for 60° f 180°. It is, thus, in 
conformity with the fact that a larger temperature variation occurs near the cornea (exposed to 
the ambient) than that over the retinal wall. It is known that T1 — T2»3.3°C. Any other variation 
of θs(f) can be easily incorporated. 

NUMERICAL TECHNIQUE 
Following de Vahl Davis12, we introduce the false transient equations in order to reduce the 
computer time required for a numerical solution of (1)-(4). The changes to the equations are 
the introduction of false transient factors aθ, aΩ and aΨ and the addition of a transient term to 
(2) to turn it into a parabolic equation. Thus (1)-(3) are written as: 

The false transient factors change the time scales of the governing equations, leading to a loss 
of the true transient solution, but the final steady state solution, if one exists, is unaffected. 
Optimum values of these factors, if found, speed up the convergence. Generally, numerical 
instability arises first in the vorticity equation (7) and a reduction in aΩ, accompanied by a 
corresponding increase in aθ and aΨ, permits solution to be obtained for larger parameter 
values12. No attempt was made to optimize the values of false transient factors. 

For the finite difference solution of (5), (6), (7) and (4), forward differences are used for the 
time derivatives and second-order central differences for the space derivatives. The resulting 
algebraic equations are solved by the alternating direction implicit method, thus solving a set 
of tridiagonal equations every time. In accordance with de Vahl Davis12, we found that the cell 
Reynolds number restriction resulting from the use of second-order central differences for 
convection terms is not overwhelming due to relatively small velocities in natural convection 
even at large Grashof numbers. In order to keep the solution numerically stable, the time step 
∆Τ is limited to a value of the order of the square of the smaller of the two mesh sizes ∆R and 
∆f, with the false transient factors set to unity. In addition to their role in speeding up the 
convergence, these factors are used to postpone the numerical instability at sufficiently large values 
of the Grashof number. 

It is well known that as the Grashof number increases, the boundary layer on the spherical 
wall gets thinner and there are large gradients in the f direction as well. In order to resolve 
these radial and azimuthal gradients, it is necessary to have a high density of grid points near 
regions of large gradients. If the grid size is kept uniform, a very large number of grid points 
would result leading to a solution of a large set of equations. This would require excessive 
computer time and involve large round-off error. A practical solution is to use a fine mesh size 
near regions of large gradients, and larger mesh size elsewhere. In order to have a guided, rather 
than an arbitrary, uneven distribution of grid points, local one-dimensional grid adaptation, 
following Nakahashi and Deiwert's method13, is used. It may be pointed out that a 
two-dimensional grid adaptation renders the grid non-orthogonal, thus requiring the solution 
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of a complex set of transformed equations owing to the presence of pseudo-diffusive terms. On 
the other hand, one-dimensional grid adaptation in each direction keeps the grid orthogonal, 
and, therefore, (5), (6), (7) and (4) remain unchanged. However, with an uneven distribution of 
grid points, the second-order central differences for space derivatives need to be modified, as 
described by Hornbeck14. 

The number of grid points were taken to be 41 in the radial direction and 46 in the f direction 
at low Rayleigh numbers, and increased to 81 and 91, respectively, at high Ra. For Ra<104, 
results with a 41 x 46 grid matched very well with those obtained with a 61 x 61 grid; maximum 
difference being less than 2%. The final solution of (5), (6), (7) and (4) is fed into a very similar 
code for steady state equations of motion (without the initial conditions and ∂/∂τ terms) to 
ensure that the solution presented here is the steady state one. Hardly any iteration was required 
in this final step. 

While the discretization of boundary conditions for Ψ and θ is straight forward, the boundary 
condition for Ω at R = 1 is discretized, following Woods15, as: 

where the subscripts 'b' and 'b+1' denote values at a mesh point on the boundary and one 
mesh length ∆R away from the boundary, respectively. This is a second-order relation, thus 
matching with the discretization of the governing equations. 

ACCURACY 
Since no study, experimental or numerical, is available for convection within the eye or within 
a sphere with a variable temperature on its surface, a check on the solution was provided by 
solving the well-studied natural convection problem within a spherical annulus with isothermal 
walls, inner sphere being hotter than the outer. The governing differential equations for this 
case are the same; only some boundary conditions are different. A comparison was made for 
Ra= 14,000, Pr=0.7 and diameter ratio of 2 with the results provided by Singh and Chen16. 
The results matched very well. There was excellent agreement between the isotherms and 
streamlines within the annulus, and between the local Nusselt numbers on the inner and outer 
spheres. The maximum value of the dimensionless stream function in our case is 0.2071 while 
theirs is 0.2076, and the location of this maximum coincides exactly. Moreover, while our average 
Nusselt number is 2.1331, Singh and Chen16 found a value of 2.1439. Our results for this case 
are shown in Figure 1 in terms of isotherms and streamlines. The isotherms in this and later 
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Figures have been drawn at intervals of 0.05, while the streamlines have been drawn at intervals 
of Ψmax/10, with values of Ψ/Ψmax displayed on the streamlines. The sign x indicates the location 
of Ψmax, also known as the centre of rotation for the fluid in the half annulus. Singh and Chen16 

developed a series solution in terms of Legendre polynomials and Gegenbauer functions, but 
were unable to get accurate results for higher Rayleigh numbers due to premature truncation 
of the series solution17. Another check was provided by the fact that Nusselt number averaged 
over each of the spheres in the annulus was the same, and matched very well with values available 
in the literature. Owing to lack of data available in the literature on vorticity, no comparison 
could be made for its values. 

RESULTS 
All the results presented here are for a Pr=4.63 (water at 37°C). The mean eyeball diameter is 
about 23 mm, and the temperature difference, (T1 — T2), is about 3.3°C. Figure 2 shows the 
isotherms and streamlines for Ra= 11,275 which corresponds to (T1 — T2)»0.4°C for the human 
eye. In this and later Figures, values of Ψ/Ψmax are displayed on the streamlines. As shown by 
the streamlines, the flow is essentially anti-clockwise about the centre of rotation at f »110°. 
The isotherms are crowded into the top of the cavity with a relatively large region around f = 90° 
being almost isothermal. As the Rayleigh number increases, implying an increase in (T1 — T2), 
the single cell in Figure 2 breaks-up into several cells. Figure 3 shows the isotherms for Ra=22,550, 
twice that for Figure 2, and we notice a clockwise cell near the eyeball surface around f = 60°. 
This cell is much weaker than the main eddy which is anti-clockwise. The isotherms have crowded 
more into the upper part of the cavity, increasing the temperature gradients for f 30°. 

As the Rayleigh number increases to 64,940, corresponding to (T1 — T2) »2.4°C, the clockwise 
cell, with a centre of rotation around f = 60°, expands and gets stronger, as shown in Figure 4. 
The anti-clockwise main eddy has a centre of rotation at f »135°. A large part of the cavity is 
almost isothermal, as shown by the isotherms. Finally, Figure 5 shows the isotherms and 
streamlines for Ra = 89,310 corresponding to (T1 — T2) » 3.3°C, the condition pertaining to the 
human eye. At this Ra, there are four cells present, two anti-clockwise and two clockwise. The 
two newly formed cells are very weak compared to the already existing cells. Comparison of 
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Figures 4 and 5 shows that the clockwise eddy with the centre of rotation around f = 60° is 
stronger in Figure 4 (lower Rayleigh number) than that in Figure 5 (higher Rayleigh number), 
while the anti-clockwise eddy with the centre of rotation around f = 135° is stronger at the 
higher Rayleigh number. Thus, it appears that the former (clockwise) eddy breaks up further 
into smaller eddies as Ra increases from 64,940 in Figure 4 to 89,310 in Figure 5. The isotherms 
show a still larger region under nearly isothermal conditions. 

Figure 6 shows the velocity vectors in the spherical cavity at two Rayleigh numbers. The 
velocity vectors, normalized by the maximum speed in the cavity for each Ra, have been drawn 
to scale in Figure 6, and represent the normalized velocity at the mid-point of the vector. These 
vectors are drawn at 20 equidistant radial positions and at 20° intervals in f within the spherical 
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cavity. It may be noted that the maximum speed of flow is near the centre of the eye, and is 
only 2.6 mm/sec when Ra=89,310 and about 2.1 mm/sec when Ra=40,590 corresponding to 
(T1 — T2) » 1.5°C. It is clear from Figure 6 that the flow fields near f = 90° are quite different 
for the two Rayleigh numbers. For the higher Rayleigh number pertaining to the actual condition 
within the eye, velocity of the fluid around f »90° is very small for R » 0.75. Thus, there is 
an almost stagnant fluid in this region, and it is in this region that blind spots are found within 
certain eyes18. Apparently, the jelly-like vitreous body in the posterior part of the eye coagulates 
into an opaque body within the stagnant region due to lack of circulation, leading to the 
formation of blind spots. Owing to the lack of better data, these results are based on the 
assumption of a sinusoidal variation of temperature on the eyeball surface. While the flow field 
within the eye depends upon the surface temperature distribution, the finding that stagnation 
region within the eye is located where blind spots with certain eyes are found leads one to 
speculate that the actual temperature distribution on the eye surface may be close to the sinusoidal 
one. 

CONCLUSIONS 
An efficient numerical technique for the study of natural convection flow within the human eye, 
modelled as a sphere with a prescribed temperature variation over its surface, has been described. 
Results are presented for Prandtl number of 4.63 corresponding to water at 37°C. The break-up 
into multi-cellular flow is found at high Rayleigh numbers. Results identify regions of stagnant 
fluid in locations similar to those of blind spots in the eye. 
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